

Mechatronics Engineering Program

Program Specification

A- Basic Information

Program Title
Mechatronics Engineering

		8	8	
Program Type	Single	e	Category	Undergraduate
Dept. Offering the Program	Mechanical Er Departm	0	System	Credit Hours
Units Required for Graduation	208 un	its	Awarded Degree	BSc. In Mechatronics Engineering
	Preparatory Year (Level 0)	44 Units	NO. of Levels	5 Levels
Program Stages	Diploma (Level 1-2)	83.5 Units	NO. of Semesters	15 Semesters
	Bachelor (Level 3-4)	80.5 Units	Academic Year	2022/2023
Program Coordinator		Dr. Abd El-	Salam Ezzat	
External Evaluator (s)			ma Mostafa E amed RedaOs	•
The most recent a	approvalDate of	Dept. council	5	/9/2022
program sp	ecification	Academic council	No.(40	5) 19/9/2022

B- Specific Information

1- Program Vision and Mission

The program's vision and mission are both originate from the vision and mission of El-Minya high institute for engineering and technology.

The Vision	The Mission
The program aims at graduating a well-qualified mechatronics engineer, capable of understanding recent technology, carrying research to professionally achieve development that eventually bring benefits for community and country	mechatronics engineer adopting the National Academic Reference Standards, able to compete locally and regionally, equipped with

2- Program Aims:

A. Engineering Aims:

- 1. Apply knowledge of mathematics, chemistry, physics, and engineering concepts to the solution of engineering problems.
- **2.** Design a system; component and process to meet the required needs within realistic constraints.
- **3.** Identify, formulate and seek the appropriate solution for engineering problems.
- **4.** Work and communicate effectively within multi-disciplinary teams.
- **5.** Analyze, design and evaluate a system related to the mechatronics systems to meet the required needs within realistic constraints.
- **6.** Consider the impacts of engineering solutions on society & environment.
- **7.** Use the scientific techniques, personal skills, and engineering different tools, necessary for engineering practice and project management.
- **8.** Display professional and ethical responsibilities, and contextual understanding.
- 9. Communicate effectively.
- 10. Participate in and lead quality improvement projects.

B. Mechatronics Aims:

- **1.** Apply knowledge of mathematics, science and engineering concepts to the solution of engineering problem.
- 2. Integrate knowledge, understanding and gained skills and apply concepts and laws taught in mechatronics, control, automation and, modelling and simulation of dynamic systems and digital control to solve real industrial problems
- **3.** Develop and use analytical in the fields of mechatronics, robotics, CNC, and Unmanned aerial vehicle as well as computational models to solve mechatronics engineering problems.
- **4.** Apply knowledge of mathematics, and engineering concepts to solve the mechatronics and engineering problems.
- **5.** Professionally adapt with the progressively technological advancement.
- **6.** Enhance safety awareness and apply industrial safety.
- **7.** Lead a group, present ideas, communicate effectively and carry out the duties and professional responsibilities.

2.1Academic Standards

The program adopts the National Academic Reference Standards, NARS for engineering in general and Mechanical Engineering in specific approved by the department council 19/12/2019 and the institute academic council No. (13) 26/12/2019 in addition to ARS in the department council 14/4/2020 and the institute academic councilNo. (16) 21/4/2020

2.2Program Aims in Relation to NARs Graduate Attributes

	NARS Graduate Attributes	Program Aims
	Upon successful completion of program, the graduate should be able to: Na) Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations.	Upon successful completion of program, the graduate should be able to: 1. Apply knowledge of mathematics, chemistry, physics, and engineering concepts to the solution of engineering problems.
	thinking in real life situations. Nb) Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation.	Design a system; component and process to meet the required needs within realistic constraints.
	Nc) Behave professionally and adhere to engineering ethics and standards.	3. Identify, formulate and seek the appropriate solution for engineering problems.
ering	Nd) Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance;	4. Work and communicate effectively within multi-disciplinary teams.
Engineering	Ne) Recognize his/her role in promoting the engineering field and contribute in the development of the profession and the community;	5. Analyze, design and evaluate a system related to the mechatronics systems to meet the required needs within realistic constraints.
	Nf) Value the importance of the environment, both physical and natural, and work to promote sustainability principles;	6. Consider the impacts of engineering solutions on society & environment.
	Ng) Use techniques, skills and modern engineering tools necessary for engineering practice;	7. Use the scientific techniques, personal skills, and engineering different tools, necessary for engineering practice and project management.
	Nh) Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies.	8. Display professional and ethical responsibilities; and contextual understanding.
	Ni) Communicate effectively using different modes, tools and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner.	9. Communicate effectively.

	Nj) Demonstrate leadership qualities, business administration and entrepreneurial skills.	10. Participate in and lead quality improvement projects.
	Nk) Apply theories and concepts of chemistry, physics, mathematics, electronics and engineering principles to mechatronics and systems.	Apply knowledge of mathematics, science and engineering concepts to the solution of engineering problem.
S	NL) Apply and integrate knowledge, understanding and skills of different subjects to solve real problems in industries.	2. Integrate knowledge, understanding and gained skills and apply concepts and laws taught in mechatronics, control, automation and, modelling and simulation of dynamic systems and digital control to solve real industrial problems
Mechatronics	NM) Design and execute a project in the field of mechatronics and s engineering.	3. Develop and use analytical in the fields of mechatronics, robotics, CNC, and Unmanned aerial vehicle.as well as computational models to solve mechatronics engineering problems.
N	NN) Use mathematical and computational skills in solving mechatronics and engineering problems.	4. Apply knowledge of mathematics, and engineering concepts to solve the mechatronics and engineering problems.
	NO) Adapt with technological evolutions.	5. Professionally adapt with the progressively technological advancement.
	NP) Apply industrial safety.	6. Enhance safety awareness and apply industrial safety.
	NQ) Communicate with others, present ideas and findings and lead a group.	7. Lead a group, present ideas, communicate effectively and carry out the duties and professional responsibilities.

2.2- Contribution of NARS to Program Competencies

	Program Competencies	NARS 2018 and ARS for Mechatronics Program
	Upon successful completion of program, the graduate should have a knowledge and understanding of:	Upon successful completion of Mechatronics program, the graduate should be able to:
	A1) Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	a1) Identify and solve quit simple basic engineering problems based on basic physics and engineering mathematics.
	A2) Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	a2)Recognize how to develop and conduct appropriate experimentation and/or simulation and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to reach a conclusion.
Engineering	A3) Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	a3)Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.
Engir	A4) Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	a4)Combine and exchange contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.
	A5) Practice research techniques and methods of investigation as an inherent part of learning.	a5)Acquire the practice research techniques and methods of investigation as an inherent part of learning
	A6) Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	a6)Organize, supervise, and monitor implementation of engineering projects, taking into consideration other trades requirements.
	A7) Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams.	a7)Collaborate Function efficiently as an individual and as a member of multidisciplinary and multicultural teams.
	A8) Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	a8) Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.

	A9) Use creative, innovative and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations. A10) Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	a9)Think creatively, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations. a10)Gain and apply new knowledge, and practice self, lifelong and other learning strategies.
	B1) Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, , Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations	b1)Design and analyze physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, , Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations
Mechanical	B2) Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computeraided tools and a software contemporary to the mechanical engineering.	b2) Organize and design mechanical systems and machine elements using appropriate materials both traditional means and computeraided tools and a software contemporary to the mechanical engineering.
	B3) Select conventional mechanical equipment according to the required performance.	b3) Select conventional mechanical equipment according to the required performance.
	B4) Adopt suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and maintain mechanical equipment and systems.	b4) Select the suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and maintain mechanical equipment and systems.
	C1) Analyzing the performance of mechatronic systems using scientific, mathematical and computer models and assessing their limits for specific cases.	c1) Analyze the performance of mechatronic systems using scientific, mathematical and computer models and assessing their limits for specific cases.
ronics	C2) Defining and classifying the performance of mechatronic systems and components through the use of analytical methods and modeling techniques.	c2) analyze the performance of mechatronic systems and components through the use of analytical methods and modeling techniques.
mechatronics	C3) Design mechatronic systems using a systems approach to meet specific specifications and requirements. C4) Incorporating a wide range of tools, analytical techniques, equipment and	c3) Design mechatronic systems using a systems approach to meet specific specifications and requirements.c4) Combine and exchange a wide range of tools, analytical techniques, equipment and
	software packages for designing and developing mechatronic systems.	software packages for designing and developing mechatronic systems.

Mechatronics Eng. BSc. Program Specification

2.3-Matrix of courses and program Competencies

Stage: Preparatory Year

Level: 0

gory								Engir	neering l	NARS						Mo	echanica	al NAR	S	MechatronicsARS				
Category	Course Title	Code	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A01	A02	A03	B1	B2	B3	B4	CI	\Im	ຬ	22	
	Industrial Chemistry	CHM 001	√	√																			1	
	Chemistry Laboratory	CHM 002	$\sqrt{}$	\checkmark																		į Į		
	Intro. to Computer	CS 001																						
	Comp. Prog.(A)	CS 002																						
	Eng. Drawing (A)	ENG 003								√														
	Eng. Drawing (B)	ENG 004								√														
	Prod. Tech. (A)	ENG 005		\checkmark																				
<u>3</u>	Prod. Tech. (B)	ENG 006		\checkmark																				
ato	Workshop (A)	ENG 009	\checkmark	\checkmark																				
(Mandatory)	Workshop (B)	ENG 010		\checkmark																				
Z a	Technical Concepts	ENG 011								$\sqrt{}$														
	Mechanices (A)	ENG 021	\checkmark																					
Courses	Mechanices (B)	ENG 022																						
25	Civil Heritage	HUM 001																						
Core	Intro. Indus. Training	ITR 001								$\sqrt{}$		$\sqrt{}$												
- ಬಿ	Eng. Lang. (A)	LNG 001								$\sqrt{}$														
	Eng. Lang. (B)	LNG 002								$\sqrt{}$														
	Mathematics (A)	MTH 001																						
	Mathematics (B)	MTH 002	\checkmark																			ļ		
	Phys. Educ. & Activ. (A)	PHE 001								\checkmark			√											
	Phys. Educ. & Activ. (B)	PHE 002								\checkmark			√											
	Physics (A)	PHY 001																						
	Physics (B)	PHY 002	$\sqrt{}$																					

Stage: Diploma Stage

Level: 1 + 2 Mechatronics

gory								Engin	eering N	IARS						N	Aechani o	cal NAR	S	MechatronicsARS				
Category	Course Title	Code	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A01	A02	A03	B1	B2	В3	B4	C1	C2	အ	C4	
	Level (1)Mechatronic	s																						
	Mathematics (C)	MTH 101	√																					
	Mechanics (B)	ENG 121	V																					
	Physics (C)	PHY 106	√																					
	Computer Programming (B)	CS 101			√	$\sqrt{}$		1			√													
	Electrical Eng. Princp.	EE 191	√													√								
	Material Technology (A)	ENG 141	√				√									√								
	Thermodynamics (A)	ME 103	√													√								
<u>\$</u>	Fluid Mechanics (A)	ME 104	√													√		\checkmark						
(Mandatory)	Theory of Machines (A)	ME 105	√	$\sqrt{}$	√											$\sqrt{}$	√			√				
nda	Production Technology (III)	ENG 101			√	\checkmark	√		√	1						√		√						
Z Z	Engineering Graphics (C)	ENG 111	√							1														
D 88	Technical Reports	ENG 112					√			1														
Courses	Phys. Educ. & Activ. (C)	PHE 101								1			√											
S	Phys. Educ. & Activ. (D)	PHE 102								1			√											
Core	Eng. Lang. (C)	LNG 101								1														
<u>ರ</u>	Industrial Training (1)	ITR 101			\checkmark		V				√	√					√	√		√	√			
	Level (2) Mechatronic	es																						
	Electrical Machines	EE 192	√	V														√						
	Automatic Control	ME 107	V	V																√	√			
	Thermofluids Laboratory (A)	ME 117	V	V												√		√						
	Machinery and Design Laboratory (A)	ME 118	V		√					√						√	√	√						
	Machine Design (1)	ME 101	V		\checkmark					√						√	√	√	√			V		
	Stress Analysis	ME 109	√	V												√		√						
	Production Technology Workshop (III) ENG 103				√	$\sqrt{}$	√		V	√						√								

Mechatronics Eng. BSc. Program Specification

	Maintenance and Repair	ME 106				V	√		√	V						V							Т
	Diploma Project	ME 111		√				V	V	V	$\sqrt{}$	√					V	√					
	Eng. Economics	ENG 151								V				√					√				
	Management Princ.	MNG 101								V				√									
	Phys. Educ. & Activ. (E)	PHE 103								√			√										
	Industrial Training (2)	ITR 102			\checkmark						$\sqrt{}$	√							$\sqrt{}$	\checkmark	√	V	\checkmark
	Applied Mechanics	ENG 122	$\sqrt{}$													$\sqrt{}$							
	Basic Electronics laboratory	MTE 102	√	√														√			√	√	
	Transducer and Interfaces laboratory	MTE 103		√														√			√	√	
	Mathematics (D)	MTH 102	√	√																			
	Numerical Techniques	MTH 103		√																			
	Mathematical Analysis	MTH 104	√	√																			
	Statistical Techniques	MTH 105	√	√																			
	Machine Design (B)	ME 102			\checkmark					√							√	√					
ses	Mechatronics	ME 114							~							$\sqrt{}$					V	V	√
Courses	ELECTROMAG.FIE	MTE 100	$\sqrt{}$																		√	\checkmark	
4)	INSTR.&ELEC.CI	MTE 101																			√		
tive	MEASURM.&INSTR	MTE 105			\checkmark											$\sqrt{}$					V		
Elective	Computer Systems(1)	MTE 107			\checkmark	$\sqrt{}$															√	\checkmark	
	Electronic Semiconductor Devices	MTE 106	$\sqrt{}$		$\sqrt{}$																√		
	Computer Aided Graphics	CS 102	$\sqrt{}$													$\sqrt{}$							
	Industrial Engineering (I)	ME 137												\checkmark									
	Operations Researchs	ME 142								$\sqrt{}$													
	Energy And Electrmechanical S.L	MTE 104	$\sqrt{}$													$\sqrt{}$							
	Modern Egyptian History	HUM 102																					
	Islamic Civilization	HUM 103													V								
	Arabic Literature	HUM 104								√					√								

Mechatronics Eng. BSc. Program Specification

Stage: Bachelor Stage

Level: 3 + 4 Mechatronics

gory							I	Engine	ering N	IARS]	Mechai	nicalNA	RS	ľ	Mechati	onics A	ARS
Category	Course Title	Code	A1	A2	A3	A4	A5	A6	Α7	A8	A9	A10	A01	A02	A03	B1	B2	B3	B4	C1	C2	C3	C4
	Level (3) Mechatron	ies					•			•	•		•	•									
	Projects Management	MNG 201								√				V									1
	Mathematics (E)	MTH 201	√	√												√							1
	Computer App. in Eng. Industry	CS 201		√	√	V		√		√	√												√
	Electrical Machinery and Control	EE 201	√	√															V	√	V	V	1
	Tech. Writing and Tech. Communications	ENG 212								V													
	Information Processing	ENG 213		√	√	V		√		√	√												√
L	Engineering Materials	ENG 241	√	√					√							√		√	√				1
ato	Egyptian History	HUM 201								√					√								1
and	Industrial Training	ITR 201		√	√		√			V	V	V				√	√	√	V	V	V	V	√
\mathbf{Z}	Eng. Lang. (D)	LNG 201								√													1
ses	Production Engineering	ME 201			√	V	√		√	√						√							1
Core Courses (Mandatory)	Production Engineering Workshop	ME 202			√	V	V		√	V						V							
ore	Thermodynamics (B)	ME 203	√	√												√	√						<u> </u>
0	Fluid Mechanics (B)	ME 204	√	√												√	√						<u> </u>
	Theory of Machines (B)	ME 205	√	√	√											√	√	√		V			<u> </u>
	Automation Control Systems	ME 207	√	√																√		√	√
	Heat and Mass Transfer	ME 209	√	√												√	√						
	Mechanical Systems Design	ME 210		√												√	√			√		√	√
	Machinery and Design Laboratory (B)	ME 218	√		V					V						√	√	V	√	V			
	Phys. Educ. & Act. (1)	PHE 201								√			√										<u> </u>
	Phys. Educ. & Act. (2)	PHE 202								√			√										<u> </u>
	Level (4) Mechatron	ics		-	-			•	•						•		•	•	•			U U	

Mechatronics Eng. BSc. Program Specification

	Industrial Training (4)	ITR 202	1	V	V	1	V			V	V	\ \			V	V		1	V	V		V
	B.Sc. Project	ME 211	-	V	<u> </u>		· ·	V	V	V	V	1			√ √	1	V	√ √	1	1	V	1
	Heat Engines and fluids Laboratory (B)	ME 217	√	√				V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V			√ √	√	V	V	٧	٧	V	
	Phys. Educ. & Act. (3)	PHE 203								V												
	Simulation & Modeling	ENG 221		V																V		√
	Electrodynamics	MTE 200	√	√											$\sqrt{}$	√						
	Digital system laboratory	MTE 201	V		V										$\sqrt{}$	√	V		√			1
	Statistical Analysis	MTH 204								√												
	Robot Applications	ME 224														V				1	\checkmark	√
	Fluid Machinery	ME 232		√												V						1
	Thermal Engineering	ME 231		√												√						
	Computer Aided Manufacturing (CAM)	ME 223	√												V	√					√	
	Digital Signal Processing	MTE 204	V																	1		
	Control of manufacturing Automation	MTE 203																	√	√	√	√
*S	Heat Transfer Equipment	ME 241		√												√						
ırse	Combustion	ME 245	√	√												1						
Col	Combustion Engines	ME 246		√												√						1
ive	Renewable Energy	ME 247	√	√											$\sqrt{}$	V						1
Elective Courses*	Digital Circuits	MTE 202	√	√											$\sqrt{}$	V			√	1		1
	Computer Systems (2)	MTE 205					V								$\sqrt{}$							1
	Computer Controlled Machines	MTE 207		√												√				1	\checkmark	√
	Designing Smart Machines	MTE 208		√												V				1	\checkmark	
	Engineering Economics	MNG 221																				1
	Industrial Psychology	HUM 204																				1
	Organizational Behavior	MNG 222																				
	Economics for Management	MNG 223																				1
	English Literature	HUM 202																				
	Commercial Law	HUM 203								√			$\sqrt{}$									<u> </u>
	Islamic Civilization	HUM 205												√								
	German Language (B)	LNG 203								√												<u> </u>
	Air Conditioning	ME 244											 $\sqrt{}$			√						<u> </u>

Mechatronics Eng. BSc. Program Specification

4- Program Competencies with adopted Teaching and Learning Methods:

IL	Os	Lectures	Distance learning	Tutorials and studio workshops	Open Discussion	Computer lab	projects	Report writing	Site visits – field survey	Case study	Office meeting
	A1	٧	٧	٧	٧		٧		٧	٧	٧
	A2	٧		٧	٧	٧		٧			
	A3			٧	٧		٧	٧	٧	٧	
gu	A4	٧	٧					٧	٧		
eeri	A5	٧	٧		٧			٧			
Engineering	A6			٧	٧		٧		٧	٧	٧
豆	A7			٧			٧	٧	٧	٧	
	A8				٧		٧		٧		٧
	A9			٧	٧		٧	٧	٧	٧	٧
	A10				٧		٧		٧	٧	
Te	B1	٧		٧	٧	٧				٧	
mechanical	B2				٧	٧	٧		٧		
nech	В3	٧	٧		٧	٧		٧		٧	
u	B4	٧	٧	٧		٧					
ics	C1	٧	٧		٧	٧				٧	
mechatronics	C2	٧	٧	٧				٧		٧	
chat	С3			٧		٧	٧			٧	٧
me	C4	٧	٧	٧		٧	٧		٧	٧	٧

5- Program Competencies with adopted Assessment Methods:

IL	Os	Written mid-term Exam	Oral Exam	Progress Test	Tutorial assignments	Reports	Project review	Homework	Oral Presentation	Written final term Exam
	A1	٧	٧	٧	٧		٧	٧	٧	٧
	A2	٧	٧	٧	٧	٧				٧
	A3		٧	٧	٧	٧	٧	٧	٧	
ρū	A4	٧			٧	٧			٧	٧
Engineering	A 5	٧		٧	٧	٧				٧
ngine	A6		٧	٧	٧		٧	٧	٧	
E	A7		٧		٧	٧	٧	٧	٧	
	A8			٧	٧		٧		٧	
	A9		٧	٧	٧	٧	٧	٧	٧	
	A10			٧	٧		٧	٧	٧	
	B1	٧	٧	٧				٧		٧
nical	B2			٧	٧		٧		٧	
Mechanical	В3	٧		٧	٧	٧		٧		٧
W	B4	٧	٧							٧
ics	C1	٧		٧				٧		٧
mechatronics	C2	٧	٧		٧	٧		٧		٧
echa	С3		٧		٧		٧	٧		
Ш	C4	٧	٧	-	٧		٧	٧	٧	٧

6- Program Courses Hours gap analysis in Relation to NARS Subject Areas:

						NARS Subject Areas									
				e	lit	A	В	C	D	E	F	G			
Stage	Level	Category	Code	Course Title	Total Credit Hours	Humanities and Social Sciences	Mathematics and Basic Sciences	Basic Engineering Sciences	Applied Engineering and Design	Computer Applications and ICT	Projects and Practice	Discretionary Subjects			
			CHM 001	Industrial Chemistry	2			2							
			CHM 002	Chemistry Laboratory	1				1						
			CS 001	Intro. to Computer	2					2					
			CS 002	Comp. Prog.(A)	2					2					
			ENG 003	Eng. Drawing (A)	2			2							
			ENG 004	Eng. Drawing (B)	2			2							
			ENG 005	Prod. Tech. (A)	3			3							
			ENG 006	Prod. Tech. (B)	3			3							
		ry)	ENG 009	Workshop (A)	1				1						
ar		dato	ENG 010	Workshop (B)	1				1						
y Ye	0)	Ian	ENG 011	Technical Concepts	1	1									
Preparatory Year	Level (0)	Courses (Mandatory)	ENG 021	Mechanices (A)	2		2								
pare	Lev	urse	ENG 022	Mechanices (B)	2		2								
Pre			HUM 001	Civil Heritage	1	1									
		Core	ITR 001	Intro. Indus. Training	5						5				
)	LNG 001	Eng. Lang. (A)	1	1									
			LNG 002	Eng. Lang. (B)	1	1									
			MTH 001	Mathematics (A)	3		3								
			MTH 002	Mathematics (B)	3		3								
			PHE 001	Phys. Educ. & Activ. (A)	0.5	0.5									
			PHE 002	Phys. Educ. & Activ. (B)	0.5	0.5									
			PHY 001	Physics (A)	3		3								
			PHY 002	Physics (B)	3		3								

	=							NAR	S Subject A	reas		
				e	it	A	В	C	D	E	F	G
Stage	Level	Category	Code	Course Title	Total Credit Hours	Humanities and Social Sciences	Mathematics and Basic Sciences	Basic Engineering Sciences	Applied Engineering and Design	Computer Applications and ICT	Projects and Practice	Discretionary Subjects
			MTH 101	Mathematics (C)	3		3					
			ENG 121	Mechanics (B)	3		3					
			PHY 106	Physics (C)	3		3					
			CS 101	Computer Programming (B)	2					2		
			EE 191	Electrical Eng. Princp.	3			3				
			ENG 141	Material Technology (A)	2			2				
	ics		ME 103	Thermodynamics (A)	3			3				
	con		ME 104	Fluid Mechanics (A)	3			3				
	hatı		ME 105	Theory of Machines (A)	2			2				
	Level (1) Mechatronics		ENG 101	Production Technology (III)	2			1	1			
	1(1)	ry)	ENG 111	Engineering Graphics (C)	1				1			
	eve	ato	ENG 112	Technical Reports	1	1						
tage	L	(Mandatory)	PHE 101	Phys. Educ. & Activ. (C)	0.5	1						
Diploma Stage			PHE 102	Phys. Educ. & Activ. (D)	0.5	1						
lon		rse	LNG 101	Eng. Lang. (C)	1	1						
Jip.		Courses	ITR 101	Industrial Training (1)	5						5	
I		-	EE 192	Electrical Machines	3			1	2			
		Core	ME 107	Automatic Control	2			1				
		C	ME 117	Thermofluids Laboratory (A)	1				1			
			ME 118	Machinery and Design Laboratory (A)	1				1			
	iics		ME 101	Machine Design (1)	2			2				
	ron		ME 109	Stress Analysis	2			1	1			
	Level (2) Mechatronics		ENG 103	Production Technology Workshop (III)	1				1			
	2) M		ME 106	Maintenance and Repair	1			1				
	7 [ME 111	Diploma Project	2						2	
	eve		ENG 151	Eng. Economics	1	1						
	Ľ		MNG 101	Management Princ.	1	1						
			PHE 103	Phys. Educ. & Activ. (E)	0.5	0.5						

	_					NARS Subject Areas						
				e	it	A	В	C	D	E	F	G
Stage	Level	Category	Code	Course Title	Total Credit Hours	Humanities and Social Sciences	Mathematics and Basic Sciences	Basic Engineering Sciences	Applied Engineering and Design	Computer Applications and ICT	Projects and Practice	Discretionary Subjects
			ITR 102	Industrial Training (2)	5						5	
			ENG 122	Applied Mechanics	2				2			
			MTE 102	Basic Electronics laboratory	1			1				
			MTE 103	Transducer and Interfaces laboratory	1				2			
		for	MTH 102	Mathematics (D)	3		3					
		ses f	MTH 103	Numerical Techniques	3		3					
		Courses	MTH 104	Mathematical Analysis	2		3					
			MTH 105	Statistical Techniques	2		3					
		Elective	ME 102	Machine Design (B)	2				2			
		ect	ME 114	Mechatronics	3				3			
		豆	MTE 100	ELECTROMAG.FIE	3			3				
			MTE 101	INSTR.&ELEC.CI	3			3				
			MTE 105	MEASURM.&INSTR	3				3			
			MNG 201	Projects Management	1	1						
			MTH 201	Mathematics (E)	3		3					
			CS 201	Computer App. in Eng. Industry	1					3		
			EE 201	Electrical Machinery and Control	2			2				
	S	ry)	ENG 212	Tech. Writing and Tech. Communications	1	1						
ge	Level (3) Mechatronics	(Mandato	ENG 213	Information Processing	1				1			
Bachelor Stage	nat	Tar	ENG 241	Engineering Materials	2			2				
ı	eck	3	HUM 201	Egyptian History	1	1						
elo	M	ses	ITR 201	Industrial Training	5						5	
ıch	(3)	n	LNG 201	Eng. Lang. (D)	1	1						
B	evel	Core Courses	ME 201	Production Engineering	2				2			
	L	Cor	ME 202	Production Engineering Workshop	1				1			
			ME 203	Thermodynamics (B)	3				3			
			ME 204	Fluid Mechanics (B)	3				3			
			ME 205	Theory of Machines (B)	3				3			
			ME 207	Automation Control Systems	2				2			

	<u>-</u>					NARS Subject Areas								
				e e	it	A	В	С	D	E	F	G		
Stage	Level	Category	Code	Course Title	Total Credit Hours	Humanities and Social Sciences	Mathematics and Basic Sciences	Basic Engineering Sciences	Applied Engineering and Design	Computer Applications and ICT	Projects and Practice	Discretionary Subjects		
			ME 209	Heat and Mass Transfer	3			3						
			ME 210	Mechanical Systems Design	2			2						
			ME 218	Machinery and Design Laboratory (B)	1				1					
			PHE 201	Phys. Educ. & Act. (1)	0.5	0.5								
	PHE 202 Phys. Educ. & Act. (2) 0.5				0.5	0.5								
	Š		ITR 202	Industrial Training (4)	5						5			
	nic		ME 211	B.Sc. Project	3						5			
	Level (4) Mechatronics		ME 217	Heat Engines and fluids Laboratory (B)	1				1					
	Mech		PHE 203	Phys. Educ. & Act. (3)	0.5	0.5								
	(4)		ENG 221	Simulation & Modeling	2				1	1				
	vel		MTE 200	Electrodynamics	3			3						
	Le		MTE 201	Digital system laboratory	1				1					
			MTH 204	Statistical Analysis	3		3							
			ME 224	Robot Applications	2				2					
			ME 232	Fluid Machinery	3			3						
			ME 231	Thermal Engineering	3			3						
		helor	ME 223	Computer Aided Manufacturing (CAM)	2					2				
		Bac	MTE 204	Digital Signal Processing	2			2						
		Courses for Bachelor	MTE 203	Control of manufacturing Automation	2			2						
		ours	ME 241	Heat Transfer Equipment	3				3					
			ME 245	Combustion	3				3					
		ive	ME 246	Combustion Engines	3				3					
		Elective	ME 247	Renewable Energy	3				3					
		El	MTE 202	Digital Circuits	3				3					
			MTE 205	Computer Systems (2)	2				2					
	SUM OF Units			30	43	61	71	16	32	0				
			GAP (PRE%)		14.42	20.67	29.33	34.13	7.69	15.38	0.00		

Mechatronics Eng Program Specification.

								NAR	S Subject A	reas		
		rtle tle		it	A	В	C	D	E	F	G	
Stage	Level	Category	Code	Course Title	Total Credit Hours	Humanities and Social Sciences	Mathematics and Basic Sciences	Basic Engineering Sciences	Applied Engineering and Design	Computer Applications and ICT	Projects and Practice	Discretionary Subjects
	NARS			9% - 12%	20%- 26%	20% - 23%	20% - 22%	9% - 11%	8% - 10%	6% - 8%		

Gap Analysis Summery

	Subject Area	Hours	NARS	EXISTING
A	Humanities and Social Sciences		09:12	
В	Mathematics and Basic Sciences		20:26	
C	Basic Engineering Sciences		20:23	
D	Applied Engineering and Design		20:22	
E	Computer Applications and ICT		09:11	
F	Projects and Practice		08:10	
G	Discretionary Subjects		06:08	
	Total		100%	100%

7- Program Structure and Contents:

7-a- Program Duration:

The program duration is at least five academic years including 3 semesters per year (Summer semester is optional) with max. total number of 15 semesters. Each semester is 15 weeks long except summer one that can extend to only 8 weeks. The maximum study duration is 8 years. The student who cannot fulfill the graduation requirements during this period could re-apply for the study conditioned on the number of credit hours not exceed (2/3) the graduation required credit hours.

7-b- Program Structure:

The program is based on credit-hours system where the credit hour (Cr-h) is the study measurement unit that equals one lecture hour or two practical / exercise hours in a weak within one semester.

Total (Cr-h) required for graduation = 208 Cr-h
Core (Mandatory) = 149 Cr-h
Elective = 59 Cr-h

7-c- Program Stages & Levels:

The program has two stages in addition to the preparatory year (Diploma stage and Bachelor stage). In general, it consists of five levels over its all stages as follow:

Preparatory year = Level (0) = 44 Cr-hDiploma stage = Level (1) + Level (2) = 83.5 Cr-hBachelor stage = Level (3) + Level (4) = 80.5 Cr-h

7-c- Program Registration Rules:

- The student can apply for 20 Cr-h in each first and second semesters of the academic year.
- The student can apply for two courses only with 7 Cr-h or less in the summer semester.

8- Courses Contributing to the Program:

8-1 Preparatory Year: Level (0)

			W	eekly hou	rs		Program Competencies covered by
Code	Course Title	Lect.	Exc.	Lab	Total	Total Cr-h	course
CHM 001	Industrial Chemistry	2	2	0	4	3	A1, A2
CHM 002	Chemistry Laboratory	2	2	0	4	2	A1, A2
CS 001	Intro. to Computer	2	0	2	3	1	A1,A5
CS 002	Comp. Prog.(A)	1	0	2	3	2	A1,A5
ENG 003	Eng. Drawing (A)	2	2	0	4	2	A1,A8
ENG 004	Eng. Drawing (B)	2	1	0	3	2	A1,A8
ENG 005	Prod. Tech. (A)	2	2	0	4	3	A1, A2
ENG 006	Prod. Tech. (B)	2	2	0	4	3	A1, A2
ENG 009	Workshop (A)	0	1	0	3	1	A1, A2
ENG 010	Workshop (B)	0	0	0	2	1	A1, A2
ENG 011	Technical Concepts	1	0	0	0	1	A5,A8
ENG 021	Mechanices (A)	2	2	0	0	2	A1
ENG 022	Mechanices (B)	2	2	0	0	2	A1
HUM 001	Civil Heritage	1	0	0	0	1	A5
ITR 001	Intro. Indus. Training	0	0	0	4	5	A2,A3,A5,A8, A9,A10
LNG 001	Eng. Lang. (A)	1	2	0	2	1	A8
LNG 002	Eng. Lang. (B)	1	2	0	2	1	A8
MTH 001	Mathematics (A)	2	2	0	4	3	A1
MTH 002	Mathematics (B)	2	2	0	4	3	A1
PHE 001	Phys. Educ. & Activ. (A)	1	0	0	1	0.5	A8
PHE 002	Phys. Educ. & Activ. (B)	1	0	0	1	0.5	A8
PHY 001	Physics (A)	2	2	2	4	3	A1,A2
PHY 002	Physics (B)	2	2	2	4	3	A1,A2
,	Total Weekly Hours					44	

8-2 Diploma Stage Core Courses (Mandatory): Level (1)

			W	eekly hour	'S		Program Competenciescovered by
Code	Course Title	Lect.	Exc.	Lab	Total	Total Cr-h	course
MTH 101	Mathematics (C)	2	2	0	4	3	A1
ENG 121	Mechanics (B)	2	2	0	4	3	A1
PHY 106	Physics©	2	1	0	3	3	A1,A2
CS 101	Comp. Prog.(B)	1	0	2	3	2	A2,A3,A4,A6,A8,A9,B4,C4
EE 191	Elec. Eng. Princp.	2	2	0	4	3	A1,A2,B4
ENG 141	Material Technology(A)	2	1	0	3	2	A1,A2,A5,B1
ME 103	Thermodynamics(A)	2	2	0	4	3	A1,A2,B1,B2
ME 104	Fluid Mechanics (A)	2	2	0	4	3	A1,A2,B1,B3
ME 105	Therory of Machines(A)	2	1	0	3	2	A1,A2,A3,B1,B2,B3,C1
ENG 101	Production Technology (III)	2	0	0	2	2	A3,A4,A5,A7,A8,B1
ENG 111	Engineering Graphics(C)	0	3	0	3	1	A1,A8,B1
ENG 112	Technical Reports	1	0	0	1	1	A5,A8
PHE 101	Phys. Educ. &Activ. (C)	0	0	1	1	0.5	A8
PHE 102	Phys. Educ. &Activ. (D)	0	0	1	1	0.5	A8
LNG 101	Eng. Lang. (C)	1	1	0	2	1	A8
ITR 101	Industrial Training (1)	0	0	30	30	5	A2,A3,A5,A8,A9,A10,B1,B2, C1,C2
T	Total Weekly Hours						

8-3 Diploma Stage Core Courses (Mandatory): Level (2)

			W	eekly hour	:S		Program Competencies covered by
Code	Course Title	Lect.	Exc.	Lab	Total	Total Cr-h	course
EE 192	Electrical Machines	2	2	0	4	3	A1,A2,B3,B4
ME 107	Automatic Control	2	1	0	3	2	A1,A2,C1,C2
ME 117	Thermofluids Laboratory (A)	0	0	2	2	1	A1,A2,B1,B3,
ME 118	Machinery & Design Laboratory (A)	0	2	0	2	1	A1,A3,A8,B1,B2,B3
ME 101	Machine Design (1)	1	2	0	3	2	A1,A3,A8,B1,B2,B3
ME 109	Stress Analysis	2	1	0	3	2	A1,A2,B1
ENG 103	Production Technology Workshop (III)	0	0	2	2	1	A3,A4,A5,A7,A8,B1
ME 106	Maintenance and Repair	1	0	0	1	1	A3,A4,A5,A7,A8,B1
ME 111	Diploma Project	0	0	4	4	2	A2,A6,A7,A8,A9,A10,B1,B2, C1,C2,C3,C4
ENG 151	Eng. Economics	1	0	0	1	1	A8
MNG 101	Management Princ.	1	0	0	1	1	A8

Mechatronics Eng Program Specification.

PHE 103	Phys. Educ. &Activ. (E)	0	0	1	1	0.5	A8
ITR 102	Industrial Training (2)	0	0	30	30	5	A2,A3,A5,A8,A9,A10,B1,B2, C1,C2
Т	Total Weekly Hours						

8-4 Diploma Stage Elective Courses*:

Level (1&2)

			W	eekly hour	:s		Program Competenciescovered
Code	Course Title	Lect.	Exc.	Lab	Total	Total Cr-h	by course
ENG 122	Applied Mechanics	2	1	0	3	2	A1,A2,B1
MTE 102	Basics Electronics Laboratory	0	0	3	3	1	A1,A2,B3,B4
MTE 103	Transducer & Interfaces laboratory	0	0	3	3	1	A1,A2,B3,B4
MTH 102	Mathematics (D)	2	2	0	4	3	A1,A2,B1
MTH 103	Numerical Techniques	2	2	0	4	3	A1,A2
MTH 104	Mathematical Analysis	2	1	0	3	2	A1,A2
MTH 105	Statistical Techniques	2	1	0	3	2	A1,A2
ME 102	Machine Design (B)	1	2	0	3	2	A1,A3,A8,B1,B2,B3
ME 114	Mechatronics	2	2	0	4	3	A2,A5,A7,A8,B1,B2,B4,C1,C3
MTE 100	ELECTROMAG.FIE	2	2	0	4	3	A1,A2,B4,C2
MTE 101	INSTR.&ELEC.CI	2	2	0	4	3	A1,A2,C2
MTE 105	MEASURM.&INSTR	2	0	2	4	3	A1,A2,A3,B1,B2,C1,C2
MTE 107	Computer System(1)	2	0	2	4	3	A2,A3,A4,A6,A8,A9,C4
MTE 106	Electronic Semiconductor Devices	2	2	0	4	3	A1,A3,B4,C2
CS 102	Computer Aided Graphics	0	0	2	2	1	A1,A8,B1
ME 137	Industrial Engineering (I)	2	0	0	2	2	A8
ME 142	Operations Researches	2	1	0	3	2	A8
MTE 104	Energy & Electromechanical S.L	0	0	2	2	1	A1,B1
HUM 102	Modern Egyptian History	1	0	0	1	1	A8
HUM 103	Islamic Civilization	1	0	0	1	1	A8
HUM 104	Arabic Literature	1	0	0	1	1	A8
To	otal Weekly Hours						

8-5 Bachelor Stage Core Courses (Mandatory):

Level (3)

			We	ekly hou	:s		Program Competencies covered by
Code	Course Title	Lect.	Exc.	Lab	Total	Total Cr-h	course
MNG 201	Projects Management	1	0	0	1.00	1	A8
MTH 201	Mathematics E	2	2	0	4.00	3	A1, A2,B1
CS 201	Computer App. in Eng. Industry	0	0	2	2.00	1	A2, A3, A4, A6, A8,A9,C4
EE 201	Electrical Machinery and Control	2	1	0	3.00	2	A1,A2,B4,C1
ENG 212	Tech. Writing and Tech. Communications	1	0	0	1.00	1	А8
ENG 213	Information Processing	1	0	0	1.00	1	A2,A3, A4, A6, A8, A9,C4
ENG 241	Engineering Materials	2	1	0	3.00	2	A1, A2,A7, B1, B2
HUM 201	Egyptian History	1	0	0	1.00	1	A8
ITR 201	Industrial Training(3)	0	0	30	30.00	5	A2,A3,A5,A8,A9,A10,B1, B2, C1, C2
ME 201	Production Engineering	2	0	0	2.00	2	A3, A4, A5, A7,A8, B1
ME 202	Production Engineering Workshop	0	0	2	2.00	1	A3, A4,A5,A7,A8, B1
ME 203	Thermodynamics (B)	2	2	0	4.00	3	A1, A2, B1,B2
ME 204	Fluid Mechanics (B)	2	2	0	4.00	3	A1,A2, B1, B2
ME 205	Theory of Machines (B)	2	2	0	4.00	3	A1,A2, A3, B1,B2, B3, C1
ME 207	Automation Control Systems	1	0	2	3.00	2	A1, A2, C1, C3,C4
ME 209	Heat and Mass Transfer	2	2	0	4.00	3	A1, A2, B1, B2
ME 210	Mechanical Systems Design	1	2	0	3.00	2	A2, B1, B2, C1
ME 218	Machinery and Design Laboratory (B)	0	2	0	2.00	1	A1, A3, A8, B1, B2, B3,C1
PHE 201	Phys. Educ. & Act. (1)	1	0	0	1.00	0.5	A8
PHE 202	Phys. Educ. & Act. (2)	1	0	0	1.00	0.5	A8
To	otal Weekly Hours						

8-6 Bachelor Stage Core Courses (Mandatory): Level (4)

			We	ekly hour	:s		Program Competencies covered by
Code	Course Title	Lect.	Exc.	Lab	Total	Total Cr-h	course
ITR 202	Industrial Training (4)	0	0	30	30	5	A2, A3, A5,A8,A9,A10, B1, B2, C1, C2
ME 211	B.Sc. Project	0	2	5	7	3	A2, A6, A7, A8, A9, A10,B2, B3, C1, C2, C3, C4
ME 217	Heat Engines and fluids Laboratory (B)	0	0	2	2	1	A1,A2, B2, B3
PHE 203	Phys. Educ. & Act. (3)	1	0	0	1	0.5	A8
T	otal Weekly Hours						

8-7 Bachelor Stage Elective Courses*: Level (3&4)

			We	ekly hour	:s		Program Competencies covered by
Code	Course Title	Lect.	Exc.	Lab	Total	Total Cr-h	course
ENG 221	Simulation & Modeling	2	0	0	3	2	A2, C1, C2
MTE 200	Electrodynamics	2	2	0	4	3	A1, A2, B1, B2, B4
MTE 201	Digital system laboratory	0	0	2	2	1	A1, A3, B1, B2, B3, B4, C1
MTH 204	Statistical Analysis	2	2	0	4	3	A8
ME 224	Robot Applications	1	2	0	3	2	C1,C2,C3
ME 232	Fluid Machinery	2	2	0	4	3	A1,A2, B1, B2
ME 231	Thermal Engineering	2	2	0	4	3	A1,A2, B1, B2
ME 223	Computer Aided Manufacturing (CAM)	1	0	2	3	2	A1, B1, B2, C1
MTE 204	Digital Signal Processing	2	1	0	3	2	A1, A3, C2
MTE 203	Control of manufacturing Automation	2	1	0	3	2	C1, C4
ME 241	Heat Transfer Equipment	2	2	0	4	3	A1, A2, B1, B2
ME 245	Combustion	2	2	0	4	3	A1,A2, B 1,B2
ME 246	Combustion Engines	2	2	0	4	3	A1,A2, B1, B2
ME 247	Renewable Energy	2	2	0	4	3	A1,A2,B1,B2
MTE 202	Digital Circuits	2	0	2	4	3	A1, A2, B1, B4, C1
MTE 205	Computer Systems (2)	1	0	2	3	2	A1
MTE 207	Computer Controlled Machines	1	0	2	3	2	A1, A2, C1, C2,C4
MTE 208	Designing Smart Machines	1	2	0	3	2	A1, A2,B1, B2,C1, C2,C3
MNG 221	Engineering Economics	1	0	0	1	1	A8
HUM 204	Industrial Psychology	1	0	0	1	1	A8
MNG 222	Organizational Behavior	1	0	0	1	1	A8

Mechatronics Eng Program Specification.

MNG 223	Economics for Management	1	0	0	1	1	А8
HUM 202	English Literature	1	0	0	1	1	A8
HUM 203	Commercial Law	1	0	0	1	1	A8
HUM 205	Islamic Civilization	1	0	0	1	1	A8
LNG 203	German Language (B)	1	1	0	2	1	A8
To	Total Weekly Hours						

9- Courses Contents:

Code	Course title	Contents
	ry Year – Level (0)	Contents
Ticparato	1y 1 car – Lever (0)	Functions, limits of functions, techniques for finding limits, limits
MTH 001	Mathematics (A)	involving infinity, continuous functions, the derivative, techniques of differentiation, differentials, the chain rule, implicit differentiation applications of the derivatives, extreme of functions, the mean value theorem, optimization problems, Newton's method, antiderivative and indefinite integration, the definite integral, the fundamental theorem of calculus.
MTH 002	Mathematics (B)	Applications of the definite integral, area, solids of revolution, arc length and surfaces of revolution, logarithmic and exponential functions and their derivatives, inverse trigonometric and hyperbolic functions and their derivatives and integrals, techniques of integration, integration by parts, trigonometric integrals, integrals of rational functions, reduction formulae, indetermined forms and improper integrals.
PHY 001	Physics (A)	Properties of Matter: physical quantities, standard units, dimensions, oscillations. Gravitation. Fluid statics, surface tension, fluid dynamics, viscosity. Elasticity, waves in elastic media, sound waves. Heat: temperature and temperature measurement, thermal expansion, heat transfer, the first law of thermodynamics, kinetic theory of gases, entropy and the second law of thermodynamics. Coulomb's law, the electric field, Gauss law, the electric potential, capacitance and dielectrics, current electricity, electric circuits.
PHY 002	Physics (B)	Electricity and magnetism: charge and matter, the electric field, Gauss law, electric potential, capacitors and dielectrics, current resistance and electromotive forces, the magnetic field, Ampere's law, Biot-Savart law. Maxwell's equations in integral form.
CHM 001	Industrial Chemistry	Kinetic molecular theory of gases, ideal gases. Boyle's law, Charlie's law, Avogadrro's law, ideal gas equation, some useful forms derived from ideal gas equation, Dalton's law, Graham's law and it's practical application, deviation of gases from ideal behavior, real gases, Van Der Waal's equation, liquifaction of gases and Joule-Thomson effect and it's application, Liquid state. Environmental chemistry petroleum.
CHM 002	Chemistry Laboratory	Qualitative analysis: identification of a simple salt. Quantitative analysis, volumetric analysis (neutralization, titration, oxidation, reduction, complex formation, precipitation).
CS 001	Introduction to Computer Science	Computer terminology and concepts. The history, state of the art and future of data processing Basic hardware and software concepts. The computer's effect on society, Operating Systems, DOS as an example.
CS 002	Computer Programming.(A)	Structured programming with the high level language PASCAL. The techniques of good programming style and how to design, code, debug, and document program laboratory assignments. Topics progress from basic PASCAL syntax and semantics to sequential non-text files. The control features, data structures, standard I/O libraries and the operators of the language.
ENG 003	Engineering Graphics (A)	Drawing practice, graphics geometry and tangency construction, projection of bodies of simple geometric, pictorial representation and technical sketching, orthographic projection, pictorial drawing and sectioned views.
ENG 004	Engineering Graphics (B)	Types of sectioned views, assembly drawing, familiarity with specifications, reading of blue prints, interpretation of various symbols commonly used, interpretation of material lists and bills of materials.
ENG 005	Production	Introduction to production (manufacturing processes), manufacturing

	Tochnology (A)	elements, properties of engineering materials, classification according to
	Technology (A)	machinability, cast-ability. Principles of cutting and forming properties.
		Tools and tool geometry, machine tools simplified analysis, forming
		machines simplified analysis, wood working, timber kinds and properties,
		Wood working tools and equipment, wood working machines, types of
		joints technology, finessing and protection processes, safety, costing.
		Sheet metal working, developing of surfaces. Shearing bending, duct tubes
		rolling, seam joints, safety, costing. Bench works, marking sawing,
		chiseling, filing, etc.Casting of metals, the foundry, foundry sands, molding technology, pattern making, core making, melting in the foundry,
		pouring different casting processes, felting, cleaning, finishing and
		inspection. Powder metallurgy, rolling, forging process, wire drawing,
		extrusion, cupping and deep drawings, spinning, blanking and piercing,
		enclosing, coining and stamping.
		Welding: Joining of metals, mechanical joining, metallurgical joining,
		fusion welding, oxyacetylene welding and cutting, under water welding
		and cutting, electric arc welding. Physics of arc, power sources, TIG and
		MIG, argon welding, coated electrodes classifications, standards, coding systems, CO2 welding, carbon arc welding. Cold welding cladding. Hot
		pressure welding, forge welding, electric resistance welding, spot and
		seam welding, flash welding, percussive welding, projection welding,
ENG 006	Production	friction welding, diffusion welding, ultrasonic welding. Brazing,
LING 000	Technology (B)	soldering, surfacing tests, welding defects, safety, costing.Machining
		processes: Theory of metal cutting, tool geometry, cutting speeds, feeds,
		cutting fluids, tool materials, work piece materials and properties, machinability. Machine tools classification, the lathe, description of
		mechanisms, turning processes, cylindrical, internal, taper, threads. Profile
		copying, cam turning, NC and CNC machines. Shaping and planing,
		boring, milling, sawing, broaching, gear cutting, indexing, gear
		sharpening, hobbling, non-conventional and modern machining processes.
		Practical training on the basic workshops like, machining (lathe, milling,
		shaping, drilling, and grinding machines). Identification of the main parts of each machine and how to select the cutting variables on each machine
	Production	performance of simple exercises. Wood working; hand tools, types of
ENG 009		wood and machines, filing. Welding; simple joints on arc welding and
ENG 009	Technology Workshop (A)	oxyacetylene welding. Length and angle measurements using micrometer,
	workshop (A)	vernier and protractors. Sheet metal works; Cutting, Rolling, Binding and
		making joints on sheets. Casting; recognition of the main elements and
		tools used in casting and how to make a mold using a core and a pattern for a simple casting.
		Machining: Practical training on metal cutting, operations on center lathe,
		milling m/c, shaper and drilling m/c, gear cutting on milling m/c. hand
		press and mechanical press of different capacities, shearing (blanking,
	Production	piercing and deep drawing processes).
ENG 010		Welding: Oxyacetylene; different techniques used in oxyacetylene welding, fluxes, welding and cutting torches, prepare and make some
ENG 010	Technology Workshop (B)	joints, safety during welding operations. Arc welding; the main elements,
	Workshop (b)	different coatings, welding methods, prepare and make some joints,
		safety. Resistance welding; main elements, joints of different shapes.
		Soldering and brazing; the main differences between them and the tools
		used, joints by soldering.
		Industry and technology. Engineering materials, standardization and
ENG 011	Technical Concepts	interchange-ability. Material handling and storage. Energy. Pollution and waste disposal. Information systems. Report writing. Selected industries
		(textiles, garment, plastics, refrigeration, pumps, electric, etc.).
		Introduction to engineering mechanics. Vector analysis. Forces on
		particles and rigid bodies, equilibrium of particles and rigid bodies, forces
ENG 021	Mechanics (1)	and moments, applications on beams. Analysis of simple structures,
	(=)	kinematics of particles. displacement, velocity and acceleration using
		scalar and vectorial methods, kinetics of particles. Newton's law, work and energy, impulse and momentum.
L	l	energy, impuise and momentum.

ENG 022	Mechanics (2)	Dynamics of a Particle: Kinematics of a Particle. Motion of a particle (position, displacement, velocity and acceleration). Coordinate systems (Cartesian, natural, polar and cylindrical). Kinetics of a Particle. Equation of motion. Applications (projectile, simple harmonic motion, motion in resisting medium). Work and. energy. Principle of conservation of energy. Momentum. Impulse. Impact.
HUM 001	Culture Heritage	Definition of Cultural heritage, its source, ups and downs, objectives and motivations. Throwing light on some of the scientific facts brought about by human civilization.
LNG 001	English Language (A)	Cambridge English course, developing reading skills, listening and keep listening. Basic technical English, from current course books and other authentic materials. English grammar in use.
LNG 002	English Language (B)	Headway intermediate course, developing reading skills, authentic reading, writing skills, task listening. Basic technical English interface, English for technical communication Grammar.
PHE 001	Physical Education (A)	General physical education concepts and theoretical topics. Introduction of sports psychology. The effect of movement activities on Organs of the body. Physical gymnastic exercises (1)
PHE 002	Physical Education (B)	Functional anatomy of muscles skeletal system, biomechanics of connective tissue, functional aspects of muscle and a discussion of mechanics and energetic. Factors that contribute to sport injuries, principles of prevention and car, first aid management, the treatment of injuries, rehabilitation techniques in sports medicine and safe practice and the low.
ITR 001	Industrial Training (A)	The student learns to identify the various production units and the way they inter-connect in the production process. The student is also trained to operate the various pieces of machinery in order to recognize his technical inclinations as a prelude to his selection of a specification within the institute. The student is also trained to identify the raw materials, as well as the handling, processing and machining of materials to obtain intermediate and final products. The duration of this industrial training is thirty hours per week spread over a minimum of five days for one academic term.
	Dinloma Sta	age Core Courses (Mandatory)– Level (1)
MTH 101	Mathematics (C)	Sequences, convergent or divergent series, positive terms series, convergence tests, alternating series and absolute convergence, power series, Maclaurin and Taylor series, conic sections, rotation of axes, polar coordinates, integrals in polar coordinates, polar equations of conics, functions of several variables, limits and continuity, partial derivatives, chain rule, directional derivatives, extreme, double integrals, area and volume, double integrals in polar condinates, change of variables and Jacobians.
PHY 106	Physics (C)	Physical optics: interference, diffraction, polarization, electro- and magneto- optical effects. Modern physics: basic constituents of matter, the atomic structure, the interaction of similar and dissimilar atoms, the interaction of photons and electrons, basic properties of atomic nuclei, radioactivity.
CS 101	Computer Programming (B)	Advanced computer programming techniques are taught and practiced in laboratory assignments. Emphasis is on the advanced features of the language, including such topics as recursive routines, records, pointers, and sets. Basic data structures such as stacks, queues, and lists are covered along with the algorithms for their implementation
		Foundry technology; pattern and core making design and manufacture, foundry sands, selection, preparation, testing, sand moulds, moulding
ENG 101	Production Technology (III) Production	boxes, solidification mechanism, gating and risering design, melting furnaces, charges calculations, casting processes, sand casting, permanent molds, Plaster of Paris shell moulds, lostwax, centrifugal casting, die casting continuous casting, mechanized foundry, felting, inspection, testing, casting defects, repairs, safety, costing.

	Technology	machining allowances. Prepare a mould for pouring, taking into
	Workshop (III)	consideration the riser, pouring and venting gates. Putting and inspection
	(((((((((((((((((((of casting.
		Construction drawing, working drawing, threads, fasteners, locking
ENG 111	Engineering Graphics	devices, drawing representation of welding, rivets gears, pulleys and
ENGIII	(C)	bearings, types of keys and splins fits and toleranceIntroduction in
		computer-aided drafting.
		Distributed loads, friction, center of gravity and moments of inertia work
ENG 121	Mechanics (C)	and potential energy. Kinetics of system of particles, kinematics of rigid
		bodies in plane motion. work. energy and momentum of rigid bodies, vibration.
		Atomic structure of matter, X-ray diffraction, crystallography,
		solidification mechanism, grains and grain boundaries, theory of alloys,
ENC 141	Material Technology	binary and ternary alloys, thermal equilibrium diagrams, iron carbon
ENG 141	(A)	diagram, TTT diagrams, heat treatments, carbon steels, alloy steels, cast
		iron, non ferrous metals and alloys, conventional alloys used in
		mechanical and electrical engineering.
	En ain a ari-	Equivalence, time value of money, present and future worth of SINGLE,
ENG 151	Engineering Economics	uniform and gradients, normal and effective interest rates, comparing
	Economics	alternatives using present worth, comparing alternatives using annual worth and comparing alter-natives using rate of return.
		Covers the fundamentals of thermodynamics; thermodynamic properties,
N/E 400	ME 102	processes, reversible and irreversible processes, and first and second law
ME 103	Thermodynamics (A)	of thermodynamics. Properties of pure substances, and gas laws are
		considered. Carnot and Rankine cycle is studied.
		Covers fundamentals of fluid mechanics including basic physical laws
N 655 40.4		governing the static and dynamics of fluids. It includes theory and
ME 104	Fluid Mechanics (A)	applications of continuity, impulse-momentum, and Bernoulli equation
		principles. Fluid flow in piping systems, pneumatic, hydraulic and fluid measurements are covered.
7.57.40.5	Theory of Machines	Mechanisms. Kinematics of links. Turning moment diagrams, gear trains.
ME 105	(A)	Belts, brakes and clutches. Balancing. Vibration principles.
		Introduction, definitions, stress, strain, etc. Generalized Hooke's Law,
ME 109	Stress Analysis	pressure vessels, torsion, bending, transformation of stress, yield and
1,122,105	501 055 111141 515	fracture criteria, elastic stress analysis. Introduction to experimental stress
	Electrical	analysis.
EE 191	Engineering	Introduction, linear circuits, resistive circuits, capacitance, inductance & impedance. AC circuits, electronic devices and circuits, transistors and
EE 171	Principals.	integrated circuits. Digital logic.
	•	Overview of functional responsibilities of managers such as planning,
MNG 101	Management Principals.	organizing, leading and control. The student applies same to a real life
	Frincipais.	project of his choice.
LNG 101	English Language (C)	Headway upper intermediate, developing ready authentic materials,
	3 3 3 3 3 3 3 3 3 3	ideas for a story. English for communication. Grammar.
		General culture topic may be selected from the following areas:
PHE 101		comparative study of liberal and socialist systems party systems and their
	Physical Education&	comparative study of liberal and socialist systems party systems, and their role in democratic societies the role of the media in forming public
11111111	Physical Education& Activities (C)	role in democratic societies the role of the media in forming public
	_	
	_	role in democratic societies the role of the media in forming public opinion reports on field trips to social societies museums, news media
	Activities (C)	role in democratic societies the role of the media in forming public opinion reports on field trips to social societies museums, news media writing brochures, leaflets, TV and press interviews. Introduction, orientation & safety, Refrigerator & domestic air-
ME 123	_	role in democratic societies the role of the media in forming public opinion reports on field trips to social societies museums, news media writing brochures, leaflets, TV and press interviews. Introduction, orientation & safety, Refrigerator & domestic airconditioners, Primary & secondary refrigerants, Thermal
	Activities (C)	role in democratic societies the role of the media in forming public opinion reports on field trips to social societies museums, news media writing brochures, leaflets, TV and press interviews. Introduction, orientation & safety, Refrigerator & domestic airconditioners, Primary & secondary refrigerants, Thermal insulation, Gas charging, testing & faults diagnosis, Commercial
	Activities (C) Cooling technology	role in democratic societies the role of the media in forming public opinion reports on field trips to social societies museums, news media writing brochures, leaflets, TV and press interviews. Introduction, orientation & safety, Refrigerator & domestic airconditioners, Primary & secondary refrigerants, Thermal insulation, Gas charging, testing & faults diagnosis, Commercial RAC plants & Car air-conditioners
ME 123	Activities (C) Cooling technology Industrial Training	role in democratic societies the role of the media in forming public opinion reports on field trips to social societies museums, news media writing brochures, leaflets, TV and press interviews. Introduction, orientation & safety, Refrigerator & domestic airconditioners, Primary & secondary refrigerants, Thermal insulation, Gas charging, testing & faults diagnosis, Commercial RAC plants & Car air-conditioners The student should study one or two electronic systems. The student must
	Activities (C) Cooling technology	role in democratic societies the role of the media in forming public opinion reports on field trips to social societies museums, news media writing brochures, leaflets, TV and press interviews. Introduction, orientation & safety, Refrigerator & domestic airconditioners, Primary & secondary refrigerants, Thermal insulation, Gas charging, testing & faults diagnosis, Commercial RAC plants & Car air-conditioners
ME 123	Activities (C) Cooling technology Industrial Training (1)	role in democratic societies the role of the media in forming public opinion reports on field trips to social societies museums, news media writing brochures, leaflets, TV and press interviews. Introduction, orientation & safety, Refrigerator & domestic airconditioners, Primary & secondary refrigerants, Thermal insulation, Gas charging, testing & faults diagnosis, Commercial RAC plants & Car air-conditioners The student should study one or two electronic systems. The student must be able to write a technical report describing the main details of the system.
ME 123	Activities (C) Cooling technology Industrial Training (1)	role in democratic societies the role of the media in forming public opinion reports on field trips to social societies museums, news media writing brochures, leaflets, TV and press interviews. Introduction, orientation & safety, Refrigerator & domestic airconditioners, Primary & secondary refrigerants, Thermal insulation, Gas charging, testing & faults diagnosis, Commercial RAC plants & Car air-conditioners The student should study one or two electronic systems. The student must be able to write a technical report describing the main details of the

		modes of failure, columns, springs, static shaft design, keys, power screw
		and fasteners, bolted connections welded joints and machine frame, seals,
		pipes, shrink fits and press.
	Maintenance and	Performance criteria. Maintenance strategies. Components inspection.
ME 106	Repair	Flow diagrams of action. Fault diagnosis. Dismantling and assembly.
	Kepan	Acceptance tests. Practical cases.
		Block diagrams and feedback principles. System (closed loop systems),
ME 107	Automatic Control	control actions, stability of control systems. Design criteria, sensors for
		various fields. Amplications.
		The student selects one of the available projects in the department with the
		help of the academic staff. The full plan of the project should prove that
ME 111	Diploma Project	the student has satisfactorily achieved the following:
WIL III	Dipioma Project	Understanding of both the theoretical and practical aim of the project,
		Ability to search for references and to survey for technology,
		Ability to express his ideas and present his project in acceptable form.
		Introduction and types of fluid meters, velocity measurements, flow rate
		measurements. Types of tests and measuring instruments in ICE. Ignition
ME 117	Thermofluids	timing measurements, compression pressure test. Exhaust gas analysis,
WIE 117	Laboratory (A)	engine analyzer. Refrigeration cycle, performance, coefficient of
		performance. Air conditioning systems, Performance, coefficient of
		performance.
	Machinery and	Introduction, project description, design calculation, construction, detail
ME 118	Design Laboratory	drawings and tolerances and fits. Processes of manufacturing, presentation
	(A)	and evaluation.
		Transformers, losses, tests, efficiency and auto transformer. DC machines,
EE 192	Electrical Machines	DC generator, DC motor, losses and efficiency. AC machine, induction
		machines, synchronizer machines.
		Introduction to technical reports, identification of the problem,
ENG 112	ENG 112 Technical Reports	identification of the audiences and readers survey on the problem and
		work already done about it. What did you do? Results and conclusions,
		projects and evaluation.
PHE 102	Physical Education&	Introduction to music, The main features include :.theoretical orientation,
PHE 102	Activities (D)	musical instruments, musical note, playing music, training on solo and
	, ,	choir singing. Introduction to knitting: a brief study of knitting machines, kinds of
PHE 103	Physical Education&	strings, training on various types of hand made stitches, computerized
11112 103	Activities (E)	knitting, basics of knitting machine maintenance.
	Industrial Training	The student should study one electronic system, and should do detailed
ITR 102	(2)	analysis and evaluation of the system.
		Stage Elective Courses – Level (1&2)
	Dipionia	
		Static and fatigue strength, power transmitted elements. dynamics shaft
ME 102	Machine Design (B)	design, motion control: clutches and brakes, gears; spur, helical, bevel and
		worm gearing, belts and chains, bearings hydrodynamics, hydrostatic and anti-friction bearings.
		Basic applications of thermodynamics in the study of internal combustion
ME 110	Heat Technology (I)	engines, compressors, gas turbines, steam power stations, refrigeration, air
MIE IIV	Tical Technology (1)	conditioning and combustion processes are studied.
		Application of fluid mechanics and thermodynamics to fluid flow
ME 112	Thermo-Fluid	machines is considered. Theory, design, and performance characteristics
17112 112	Machines	of pumps, compressors and turbines are studied.
		Stationary alternating current and direct current magnetic circuits.
		Transformers. Electromechanical systems. Direct current commutator
ME 113	Electromechanics	machines. Electronic control of electric motors. General theory of electric
		machines.
		A comprehensive introduction to electronics covering the design of
ME 114	Mechatronics	modern electronic networks (both digital and analog) with emphasis on
17112 117	Michael Offics	mechanical applications of integrated circuits and on circuit design.
		Introduction, Maintenance principles, Stands for failure modes effects and
ME 115	Fault Detection	critically analysis, Basic vibration, Free and force response, Vibration and
14112 113	raunt Detection	shock isolation, Modulation and beats, Failure analysis, Time and
	I	shock isolation, production and ocats, randic analysis, Time and

		frequency domain analysis.
		Applications of hydraulics, pneumatics, gears. Vacuum and pressure
ME 119	Machine Design (C)	vessels, vibration parameters in design, project design, design layouts
		specifications. CAD.
	Industrial Pollution	Types of pollutants, units and concentrations, analysis of industrial waste,
ME 127	and Control (I)	safe limits of solid, liquid and gaseous industrial pollution, pollution
		control and waste treatment.
ME 129	Energy Technology Laboratory	Project to be designed during this lab course.
ME 131	Introduction to	Working Drawings, Sectional views, Advanced orthographic and pictorial drawings, 3D modeling software, Auxiliary views, Revolutions, Design
WIE 131	computer design	Problems, Engineering drawings and sketching.
		Principles of metrology and the relationship of precise measurement to
ME 135	Metrology	design practice and production processes are studied. The theory of design
WIE 133	With ology	and utilization of various precision measurement instruments is covered.
		The laboratory applications of precision measurement devices.
ME 136	Cost Analysis	A study of the methods of preparing cost estimates to be used in the management of an industrial enterprise. Methods of operations estimating,
14112 130	Cust Allalysis	product estimating and project estimating are introduced
		The concept of a basic production control system and the requirements of
		production control for both continuous and intermittent manufacturing are
	Production and	covered. Management of inventory is treated as an integral part of the
ME 140	Inventory Control	production control system. Various methods and techniques are studied in
	inventory control	detail. Lab.oratory activities include the use of microcomputers to develop
		a simple manufacturing requirement planning model and other
		applications. Simulation is used as a tool for decision making in the lab.
		A study of industrial controls that assist engineers in the reduction of hazards associated with OSHA standards, occupational disease and injury,
		as well as use and abuse of materials. Machinery and equipment.
ME 143	Industrial Safety	Emphasis is on identification and abatement of potential losses through
		the application of OSHA Standards and the effects upon workers
		compensation rates. A major course project involves an in-plant safety
		inspection. Written and oral reports of findings and recommendations.
		Maxwell's equations and the lorentz force law. Quasi-static froms of
		Maxwell's equations. Studies of Electro-quasi-static fields and their
	ELECTROMAG.FIE	sources through solutions of Poisson's and Laplace's equations. Steady conduction and polarization. Charge relaxation. Magneto-quasi-static
MTE 100	LDS	approximation, magnetic boundary. Value problems, magnetization,
		induction, current induced in stationary and moving conductors. Electric
		and magnetic forces derived from energy. Electromagnetic waves
		Extensive use of engineering examples.
		Concept of Optimization, Linear programming and simplex Method, Non
ME 137	Industrial	linear Programming problem and their solution, Brief review of
	Engineering (I)	probability theory, queuing theory, Models of Queuing systems, application
		A study of the quantitative techniques used in the solution of industrial
	Duinginles of	engineering operations problems. Topics include graphical and simple
ME 142	Principles of Operations Research	linear programming, assignment and transportation algorithms, decision
	Operations Research	making under uncertainty, Bayes formula, queuing theory and simulation,
		computer-based solution techniques are used where appropriate.
	INSTRUMENTS	Fundamentals of Lumped Networks, Resistive Elements and Networks,
MTE 101	&ELECTRICAL	Energy Storage elements, Dynamics of First – and Second – order Networks. Sinusoidal Steady – State Analysis, Network Equivalence
	CIRCUITES	Theorems, Electonic Devices, Circuits and Applications.
		The aim of the lab is to introduce to the student to the operational
		principles of active and passive elements and their applications in circuits
MTE 102	Basic Electronics	Taking this lab will enable the student to implement transistors or
WIIE 102	laboratory	operational amplifiers in simple circuits such as switching or amplification
		and will enable the student to include diodes and passive elements (
		resistors, capacitors and inductors) in wave shaping circuits.

	Ī	
	Transducer and	Experiments on digital – to – analog and analog to digital conversion, data
MTE 103	Interfaces laboratory	transfer, serial and parallel ports. Transducers for velocity, temperature,
	interfaces laboratory	pressure, and light are to be covered.
		Independent laboratory work involving electromechanical systems, power
	Energy And	electronics, high – voltage systems, rotating electric machinery, bio-
MTE 104	Electromechanical	electromechanical, energy systems, and control. Student choice of project
	Systems Laboratory	is either from a list of suggested topics or developed by student in
		conjunction with instructor.
		Introduces measurement principles, transducers, signal conditioning,
		recording and analysis instrument. Measurement process. Brief
	3.4	description of transducers for measurement of pressure, temperature, flow
MTE 105	Measurement&	strain, force, acceleration, etc, instrumentation types and measurement
	Instrumentation	techniques, data analysis and error analysis. Emphasizes a hands-on
		approach with a wealth of laboratory experiments. Brief introduction to
		computer data acquisition.
	Electronic	Semiconductor band structure, electron transport, semiconductor barriers:
MTE 106	Semiconductor	P – N junction, schottley junction, Ohmic contacts, hetero – junction.
	Devices	Applications to bipolar transistors and metal-semiconductors Transistors.
	2011000	Multilevel Memory Systems; Naming and Binding; Privacy of
MTE 107	Computer Systems(1)	information – Atomaicity and Coordination of parallel Activities.
	Jone Systems(1)	Recovery and Reliability. Networks and Distributed System.
		First order differential equations, separable and exact differential
		equations, linear differential equations, homogenous differential equations
	Mathematics (D)	with constant coefficients, nonhomogenous differential equations, the
MTH 102		method of undetermined coefficients, the method of variation of
		parameters, series solutions of differential equations, Legendre
		polynomials, Bessel functions, Laplace transformation, convolution
		theorem inverse Laplase transformation solution of initial and boundary
		value problems using Laplace transformation.
		Types of errors, algorithms and convergence, solutions of equations in one
		variable, interpolation and polynomial approximation, divided differences,
	Numerical	central differences, inverse interpolation, numerical differentiation and
MTH 103	Techniques	integration, composite integration, Romberg integration, numerical
	reemiques	solution of ordinary differential equations, initial value problems, Euler's
		method, Runge - Kutta methods, multi step methods.
		Complex numbers, regions in the complex plane, limits, continuity,
		derivative, analytic functions, Cauchy - Riemann conditions, elementary
		functions dud mapping by them definite integral, line integrals in the
MTH 104	Mathematical	complex plane, Cauchy's theorem, Cauchy's integral theorem, derivatives
1,1111117	Analysis	of analytic functions, power series, Taylor series, Laurent series, poles,
		singularities, residue theorem evaluation of real integrals, conformal
		mapping.
		Definition of statistics, frequency tables and histograms, cumulative
		frequency, basic statistical concepts, probability, conditional probability
		and independence, rules of probability, random variables and their
MTH 105	Statistical Techniques	expected values, discrete probability distributions, continuous probability
		distributions, bivariate and marginal probability distribution expected
		values of functions of random variables.
		An introduction to computer graphics, including hardware. programming
		concepts, and a survey of applications. The interactive Graphics Software
CS 102	Computer Aided	will be developed in projects using the microcomputer. A component of
05 102	Graphics	the course will be a graphics project utilizing the BASIC programming
		language and AutoCAD.
		A study of the major topics and practices of Operations Management.
		Emphasis is on the management process for improving productivity in
	Operation	both product and service organizations. Topics include product and
MNG 111	Management (I)	service design, process design, workforce design, conversion process,
	management (1)	material management, quality control; maintenance practice, and
MNC 112	Duciost Planning	operations strategy.
MNG 112	Project Planning	A study of planning and control methods for industrial and production

		projects, including the Critical Path Methods (CPM) and Program	
		Evaluation and Review Technique (PERT) . Topics include scheduling,	
		updating and controlling with schedules, time-cost trade-off. resource	
		allocation. cost control for projects, and the roles of project personnel in	
		project organizations.	
MNG 113	Foogibility Studios	An integrated look at project evaluation taking into consideration	
MING 113	Feasibility Studies	technical, economic, manpower, financial and environmental aspects. Case studies reflecting real life situations will be included.	
		A study of Marketing topics which focus on the relationship between the	
		firm and the environment, and the requirements for sensitivity to the	
MNG 114	Marketing	changing needs of these sectors. The course will also address the	
1,21,0 11.	1/24/2-1-0/1-1-8	systematic relationship between marketing functions and other technical	
		production functions.	
I NG 102	German Language	Beginner's course. Development of speaking ability and mastering of	
LNG 103	(A)	German basic structures. Reading and understanding of simple texts	
I NC 104	Enough Language (A)	An elementary French course. Drill in pronounciation, elementary	
LNG 104	French Language (A)	principles of inflection and basic sentence patterns. Reading of easy texts.	
	Modern Egyptian	Particular attention is given to important events determining the life of the	
HUM 102	History	Egyptian in the twentieth century. The appearance development and	
	ZIISTOI J	growth of Egyptian middle class and its role in the national movement.	
**********	Islamic Civilization	Difference between culture and civilization, Ibn Khaldun's concept of	
HUM 103	(A)	civilization, the foundation of Islamic civilization. The decline of Islamic	
	` ′	civilization.	
HUM 104	Arabic Literature	Introduction to Arabic literature, students are introduced to various Arabic	
HUM 104	Arabic Literature	literature forms selected readings from representative contemporary literary figures.	
Docholov Sto			
	Dachelor Su	age Core Courses (Mandatory) – Level (3)	
		Welding, thermit welding, electron beam welding, cold welding, diffusion	
		welding, plasma welding, arc welding, closed welding, ultrasonic welding, surfacing tests, welding defects, safety, costing. Theory of plasticity	
	Production Engineering	(simplified), stress-strain and yield criteria, methods of determination of	
ME 201		residual, stresses and strain hardening, dimensional changes. Forming	
1,12,201		processes: product design, process variables technological aspects,	
		defects, inspection and testing of finished products. Hot forging, drop	
		forging, die. forging cold and hot extrusion, impact extrusion, Wire and	
		tube drawing, safety, costing.	
	Thermodynamics (B)	Thermodynamic analysis of power and reversed cycles, and an application	
ME 203		to internal combustion engines, gas turbines. compressors, refrigeration	
14112 203		and air conditioning. Fundamentals of gas dynamics: adiabatic, fanno and	
		Rayleigh one dimensional flow.	
NATIONAL AND A		Governing equations of fluid flow, continuity, momentum and energy	
ME 204	Fluid Mechanics (B)	equations. Potential flow and hydrodynamics. Real fluid flow, Navier	
	Theore of Markins	Stokes equations, boundary layer, laminar and turbulent flow.	
ME 205	Theory of Machines (B)	The course covers the dynamics of machines and linkage, gear trains, and mechanical vibrations.	
	` ,	The course covers the interfacing of numerical control machines and robot	
ME 207	Automation Control	control systems with a host computer, programming techniques, sensory	
111111111111111111111111111111111111111	Systems	techniques, and work cell simulations.	
		Forming machine design, eccentric systems design, frame casting,	
ME 210	Mechanical Systems	fabrication design, hydraulic systems, pump selection power requirement,	
	Design	valves, accumulators, reliability, projects evaluation,	
	Machinery and		
ME 218	Design Laboratory	Course is practical training on the steps taken to design and manufacture a certain item which will be chosen by the students.	
	(B)	·	
	Information	A course designed to build skills in the use of commercially available	
ENG 213	Processing	personal computer software. Representative programs include work	
		processing, spreadsheets, and database management systems.	
ENG 241	Engineering	Metallic materials, polymeric materials, ceramic materials, composite	
	Materials	material and advanced electronic material.	
EE 201	Electrical Machinery	Topics covered include AC and DC machines, transformers, feedback	

	and Control	control, polyphase circuits, distribution and instrumentation.
	una control	Complex numbers, regions in the complex plane, limits, continuity,
		derivative, analytic functions, Cauchy-Riemann conditions, elementary
		functions and mapping by them, definite integral, line integrals in the
MTH 201	Mathematics (E)	complex plane, Cauchy's theorem, Cauchy's integral theorem, derivatives
		of analytic functions, power series, Taylor series, Laurent series, Poles,
		singularities, residue theorem, evaluation of real integrals, conformal
		mapping.
		A study of management techniques for planning scheduling, controlling,
		costs and leveling resource requirement. The completion of a project
MNG 201 P	rojects Management	schedule using the. critical path method is required. Topics covered are
		the estimate as a basis for scheduling, networks, arrow diagrams, time
		scaled diagram, resource leveling and computer applications.
LNG 201 E	nglish Language (D)	Language power, discovering discourse, writing academic English,
	0 0 0 7	Technical English.
	hysical Education 9	Introduction to Plastic Arts: Appreciation of the artistic aspects of natural
PHE 201	hysical Education&	elements, studying the artistic effect of light and shadow, arts workshop
	Activities (I)	woodwork practice, making simple original color designs on glass
		material, metal and leather artistic creation. Introduction to Dramatic Arts: Origin and development of dramatic art
PHE 202	hysical Education&	vocal training and oral performance character representation dealing with
11112 202	Activities (II)	the audience study of different dramatic forms, play acting.
	Industrial Training	student must be able to show his ability of understanding a specific
ITR 201	(3)	application.
•	Bachelor Sta	age Core Courses (Mandatory)– Level (4)
		A study of the commercially available spreadsheet project management,
		Database and Work Processing programs as problem solving tools in an
	Computer	industrial Engineering Technology environment. The course should be
CS 201	Applications in	taken early in the student's program of study so that the skills and
E	Ingineering Industry	techniques learned will be available in subsequent courses. Lab.oratories
		are scheduled on an individual self-paced basis with extensive use being
	made of microcomputers.	
3.577.4004	Production	Construction of processes and operations sheets, time study, cost
ME 202	Engineering	estimation. Projects evaluation
	Workshop	Fundamentals of heat transfer by conduction; steady and Unsteady,
	Heat and Mass	convection, forced and natural radiation. Mass transfer; fundamental and
ME 209	Transfer	operations. Analysis of industrial heat and mass transfer operations,
	Tunster	equipment design.
		The student selects one of the available projects in the department with the
	B.Sc. Project	help of the academic staff. The fulfillment of the project should prove that
		the student has satisfactorily achieved the following:
		Understanding of both theoretical and practical aspects of the problem in
ME 211		his project; Ability to search for references and to survey modern
		technology;
		Ability to suggest solution for the problem and the acceptable and useful
		conclusions to solve the problem Ability to express his ideas and
		present his project in the acceptable form.
		Function and performance of measuring instruments, calibration. Temperature and heat flux measurements, boiling and evaporation,
ME 217	Thermofluids	
1/11/2/1/	Laboratory (B)	conduction, convection, heat exchanger. Refrigeration cycle performance. Flow in pipes and ducts. Performance of pumps and turbines. Performance
		of steam generator. Performance of internal combustion engines.
		Study of basic organization, style and mechanics of technical and
	Technical Writing	administrative reports. The course includes practice in assignments such
ENG 212	and Technology	as technical descriptions, proposals, instructions and recommendations.
	Communications	Emphasis is placed on planning, organizing and writing reports, design of
		visual aids, elements of technical editing and preparation of final drafts.
1		
HUM 201	Egyptian History	The development of the social, political and economic systems. The rise

independence and democracy.				
		Photography: History of Photography from 1826 up to the present time,		
PHE 203	Physical Education&	theoretical aspects of photography types of cameras: Polaroid, automatic,		
FHE 203	Activities (III)	single reflex (SLR) etc. photography in practice taking photo picture,		
		developing, printing, making home made line films, using video.		
	Industrial Training	The student should continue in this training in the same topic of		
ITR 202	(4)	specialization of ITR 201 with deep understanding of the topic, in addition		
		to the realization and measurement of a selected project in the same field.		
	Bachelor	Stage Elective Courses – Level (3&4)		
ME 221	System Analysis	The systems approach, the concept of systems analysis, steps of systems		
NIE 221	System Analysis	analysis, data gathering techniques, symbols of systems analysis, flow charting techniques, applications of systems analysis.		
		An introduction to the fundamentals of computer aided design and		
		drafting. The use of personal, computer and commercial CAD software as		
ME 222	Computer Aided	tools in graphic communications. Computer applications to machine		
	Design (CAD)	design calculations and other Mechanical Engineering Technology, areas		
		using high level language. Emphasis on mechanical drafting.		
		Fundamental concepts of manufacturing and automation. Numerical		
ME 222	Computer Aided	controls of manufacturing systems. Fundamentals of CAD/CAM.		
ME 223	Manufacturing (CAM)	Computers in manufacturing. Computer process monitoring. Modeling and analysis of process control. Manufacturing support systems.		
	(CANI)	Integrated manufacturing systems.		
		A general survey of the applications of industrial robots to manufacturing		
ME 224	Robot Applications	processes. Programming of robots for manufacturing operations and		
		material handling.		
		Applications of thermodynamics and heat transfer to power stations,		
ME 231	Thermal Engineering	combustion engines, industrial plants. Emphasis is given to energy		
		planning and economic utilization. Cogeneration of energy in industrial systems is needed.		
		Energy transfer considerations. Theory and design of pumps, turbines, and		
ME 232	Fluid Machinery	compressors performance characteristics. Selection criteria. Operations		
	· ·	and system		
		Data processing and analysis, vibration analysis, contaminant analysis and		
ME 234	System Diagnosis	sound analysis. Discrete frequencies. Fault analysis, planning and system		
		availability, Reliability/failure concepts, Reliability data sources.		
ME 237	Industrial Engineering (II)	Factory planning, material flow, plant planning, material handling equipment, quality control, statistical methods, costing, cost analysis,		
WIE 257		direct and indirect costs, machine hour rate, depreciation, industrial safet		
		Analysis of heat and mass transfer operations in industrial system and		
ME 241	Heat Transfer	design considerations. Emphasis on boilers, cooling towers, condensers,		
	Equipments	evaporators, and reactors.		
		Analysis of conventional energy; conversion systems. Steam and gas		
ME 242	Energy Conversion	power turbine stations, system components design, energy, planning and		
		economical considerations. Topics covered: refrigeration cycle analysis, refrigerants, equipment		
ME 243	Refrigeration	design and selection, cold stores, cryogenics and liquification of gases.		
		A study of the design of heating and cooling systems for residential and		
ME 244	Ain Canditianina	industrial applications. System components and analysis, heating and		
NIE 244	Air Conditioning	cooling load estimates, detailed design calculations are conducted for the		
		sizing of fail, ducts, pumps and piping.		
ME 245		The course covers the thermodynamics of combustion, fuels. chemical		
	Combustion	kinetics, fundamentals of gas dynamics, detonation and shock waves.		
		normal and detonating combustion, combustion in internal engines, gas turbines, and industrial, furnaces, alternate fuels.		
		The course covers system analysis components, performance		
ME 246	Combustion Engines	characteristics, and diagnosis of internal combustion engines and gas		
		turbines.		
		The course covers energy sources, fundamentals of nuclear, solar, wind,		
ME 247	Renewable Energy	waves, and biomass energies. Emphasis on availability and utilization,		
		system design and economic considerations.		

ME 248		A study of the optimization energy resources, and economic utilization. The course covers the second law of thermodynamics, availability,
	Energy Conservation	analysis of industrial energy transfer processes: energy losses,
	and Management	optimization of mass and energy transfer, power Cogeneration in
		industrial systems, and energy storage.
ME 249	Energy Laboratory	Project to be designed during this course.
	(Special) Industrial Pollution	A continuation of the course ME 127 with emphasis on tile analysis,
ME 261	and Control (II)	measurement and control of industrial pollution in Ramadan Tenth City.
	Small Projects	Definition of small project, characteristics of small project, planning of
ME 262	Planning &	small project, small project organization, small project control,
	Management	performance evaluation.
	Production Financial	Interpretation of financial and related data for internal and external use of
ME 263	Analysis	industrial firms, horizontal and vertical analysis, computation of various
	-	ratio and their impact on the decision. Quality planning, quality organization, the economics of quality, concept
ME 264	Quality Control (II)	of quality system, elements of quality system, the concept of total quality
1111 204	Quanty Control (11)	management, standard quality systems ISO 9000.
		Basic principles of the design of tools for material removal are studied;
ME 265	Machine Tool Design	blanking, bending, forming, drawing, casting joining, and inspection
14112 203	Machine 1001 Design	processes are covered. Applied laboratory exercises illustrate the course
		material through a case study APPROACH
		A study of general accounting principles. particularly in relationship to the
ME 267	Production Cost	systematic recording. organizing and analysis of financial data for effective decisions. Emphasis is placed upon systems of cost control in job
WIE 207	Analysis	order, process, standard and variable costing systems, and recording and
		control of material, direct labor, and overhead cost.
	Material Handling Equipment	Interplant transporting facilities and handling equipment, types of
ME 268		materials handling equipment components (chains ropes, pulleys,
1122 200		sprockets drums, gears, brakes, clutches and bearings) and theory of
		hoisting equipment, crane frame structures. stability of cranes. Elevators. Linear programming, simplex method, duality theory, algorithms,
		applications of elementary game theory, logic structures and models in
ME 269	Operation Research	queueing theory with application to decision making, inventory models,
		network analysis, types in non linear and integer programming.
		Plane waves in three dimensions; radiation from elementary electric
	Electrodynamics	dipoles current distributions, and arrays; diffraction and interference.
		Waves on continuous transmission lines, periodic structures, and dielectric and metallic wave guides, propagation and evanexence; energy
MTE 200		flow and impedance matching. Phase and group velocity. Natural
		frequencies and modes of closed electromagnetic structures; coupling to
		resonant structures, loaded and unloaded Q's Examples taken from the
		fields of acoustics, optics, and microwaves.
		The aim of the lab is to introduce to the student all basic components of
		digital design. Taking this lab will enable the student to understand and
MTE 201	Digital system	utilize digital components such as counter, registers, memories,
WIIE 201	laboratory	multiplexers and decoders in order to implement logic functions. In addition, microprocessors should be introduced towards the end of the
		course, and simple assembly language programs should be written to
		implement functions such as addition, multiplication and so on .
MTE 202	Digital Circuits	Combinational / Sequential Logic – Flip – Flops – Multipiexers-
11212 202	2-5-mi Oir Cuito	Decoders – Counters – Synchronization Techniques .
		Provides background for applying computer. Based control system
MTE 203	Control of	techniques to batch manufacturing Processes. Follows a brief review of classical control concepts and servo-systems with an in-depth study of the
	manufacturing	modeling and control problems associated with several manufacturing
	Automation	processes . These include metal cutting , metal forming , and welding
		processes.
MTE 204	Digital Signal	Representation, analysis, and design of discrete time signals and systems,
	Processing	Z-transforms and the discrete Fourier transform. Difference equations -

		The fast Fourier transform (FFT) algorithm High – speed convolution – Time – and frequency – domain design techniques for recursive and non –
		recursive systems. Finite word length effects . Additional topics may
		include Homo – morphic signal processing, Hilbert transforms,
		parametric signal modeling, power spectrum estimation – applications.
		Emphasizes the relationship among hardware organization, systems –
		programming, and language support in the evolution of computer
MTE 205	Computer Systems	architecture, Effect of instruction set design on performance and
	(2)	programmability; methods of addressing, creating, protecting, and
		storing data and procedure objects; processor and memory design and programming issues in vector and multiprocessor systems.
		Determination of valid mathematical models for physical and social
		systems, using observations of their behavior. Different philosophies of
		modeling; stste space time series. Multiple input – output, nonlinear and
MTE 206	System Identification	time varying systems. Parameter estimation algorithms; full information
		maximum likelihood, least squares, parameter identifiability. Model
		validation; data – anomaly detection robust estimation. Discussion of
		available software packages.
		State – of – the - art techniques involving use of digital and analog computers to monitor and control physical processes. Topics: introduction
		to analog and digital hardware at the computing module level,
MTE 207	Computer Controlled Machines	programming techniques for digital minicomputers in real – time on line
	Machines	applications, and fundamental topics in signal conditioning and data
		reduction. Students should be able to program in a high level language and
		set up elementary simulations on an analog computer.
		Introduction to designing smart products with embedded microcomputers. Topics include microprocessors as design elements, microprocessor
	Designing Smart Machines	architecture, interfacing, to mechanical devices, assembly and high level
MTE 208		languages, design of real time software, hardware / software trade-off,
		implementation choices for smart products, smart product design process.
		Students undertake one or more preliminary projects and substantial term
		design project completed individually or in groups.
		Structure of metals and alloys. Crystal imperfections, recovery, recrystalization and grain growth, cold and hot working, strain hardening,
	Production Technology (IV)	deformation by slipping and by twinning, idealized stress/strain curves,
ENG 102		determination of flow cues. Theories of yielding, forging, theory, practice
		and die design. Rolling of metal, rolling and extrusion, extrusion of
_		metals, wire drawing, tube drawing, deep drawing.
	D 1 (1)	Determination of flow curves for different materials. Upsetting of lead and
ENG 104	Production Technology Workshop (IV)	brass specimen. Extrusion of uniform or non-uniform shapes. Rolling of flat strips for different thicknesses. Determination of spring back in
ENG 104		bending. Wire and tube drawing of copper. Deep drawing of aluminum
	(Vorkshop (IV)	and brass Sheering.
ENG 122	Applied Machanias	Internal forces, friction, virtual work. Spatial kinematics of a rigid body.
12110 122	Applied Mechanics	Gyroscopic motion.
		Mechanical properties of metals, tensile, compression, bending, torsion,
ENG 142	Material Technology	shear, hardness, fatigue, creep, thermal shock. Thermal fatigue tests. Non-destructive test, physical properties of metal, dislocation theory, residual
ENG 142	(B)	stresses, methods of measuring and determination. spectral and
		microanalysis of alloys.
		The problem of material selection, the functional
ENIC 245	Engineering	requirements of engineering metals, integration of design and
ENG 215	Material Selection	economic analysis with materials and process selection, case
		studies.
		An introduction to the basic role of simulation in system modeling.
ENG 221	Simulation &	Presents approaches to organizing and conducting simulation studies.
E11G 221	Modeling	Emphasis is on the principles and practice of discrete-event simulation
		using one or more applicable programming languages.
ENG 231	Automated	An introduction to recent advances in manufacturing and in manufacturing
	Manufacturing	support systems. Topics include group technology, automated process

	Systems	planning, cellular manufacturing robotics, and the automation of shop	
		floor control and materials handling functions. Case studies and readings	
		from current periodicals are used.	
	Applications of	Computer applications in CAD/CAM, Robotics. Computer applications in	
EE 203	Industrial Computers	control of industrial processes, flow, pressure, temperature. Computer	
	industrial computers	applications in autombile industry.	
		A study of motor control systems used in industry. A study of ladder	
		diagrams, sequence control, and relay logic as a basic reference for the	
EE 292	AC and DC Machines	application of programmable controllers (PCs) and stability of the control	
		system. Power rectification, inverted methods and SCR motor control will	
		also be studied.	
		Introduction to commercial software and microcomputers. The three main	
	Computer	topics of software will be word processors. Spreadsheets, and database	
CS 103	Applications (I)	management. How to use microcomputers with different operating	
	Applications (1)	systems, and how to purchase microcomputers and packaged software will	
		be covered.	
		Fouries series, even and odd functions, half range expansions, quarter	
		range expansions, Fourier transformation, basic concepts of partial	
MTH 202	Mathematics (F)	differential equations, D'Alembert's solution of one dimensional wave	
1,111 202	Tradicinatics (1)	equation, method of separation of variables, heat and wave equations,	
		Laplace's equation, Laplace transformation and Fourier transformation	
		applied to partial differential equations.	
		Linear system of equations, Gauss elimination method, matrix	
		inversion, norms of vectors and matrices, iterative techniques for	
A APPLY AGA	and the second second	solving linear systems, boundary value problems for ordinary	
MTH 203	Num. Tech. Analysis	differential equations, the shooting methods for linear and nonlinear	
		problems, finite difference methods for linear and nonlinear	
		problems, numerical solutions to partial diffrential equations, elliptic,	
		parabolic and hyperbolic types.	
		Statistics and sampling distributions, the sample mean and variance, the	
MTH 204	Ctotiation A1	normal approximation to the binomial distribution Hypothesis testing, two	
MTH 204	Statistical Analysis	sided test of the mean, testing the variance, the chi - square test, testing of	
		randomness, testing for goodness of fit, simple regression, probabilistic	
		models, acceptance sampling. The concept of material management, material organization, material	
MNG 202	Material	requirements planning, inventory control, purchasing procedures,	
MING 202	Management		
		purchasing methods, negotiation. A continuation of Operations Management I: emphasis is placed on	
		strategic management and productivity as it relates to Operations	
MNG 211	Operation	Management. Course will focus on formulation and implementation of the	
WING 211	Management (II)	operations management activities in a practical situation, specific	
		applications identified and developed.	
		Project organization, tendering procedures, management of project	
MNG 212	Projects Planning and	resources, project management, information systems, project progress	
	Management	evaluation.	
		Project phases, pre investment studies, opportunity studies, pre feasibility	
MNG 213	Feasibility studies	studies, support studies, market analysis, project economic evaluation,	
		sensitivity analysis, risk analysis.	
		The basics of industrial marketing, industrial markets, products and	
MNG 214	Industrial Marketing	purchasing practice, industrial marketing research, demand measuring and	
		sales.	
	E •	Costing and costing systems, depreciation methods, breakeven analysis,	
MNG 221	Engineering	replacement analysis, decision making under certainty, decision making	
	Economics	under risk, evaluation of public projects.	
	Owac-!1	A study of organization theories, concepts and structures, individual and	
MNG 222	Organizational Behavior	group behavior, communication process, leadership, conflict management,	
	Denavior	motivation, management of change.	
MNG 223	Economics for	Resource allocation money, material, machine and manpower. Economic	
1/11/10/2/23	Management	aspects in marketing, economic considerations in decision making.	
LNG 203	German Language	Systematic discussion of grammatical difficulties. Oral practice and	

Mechatronics Eng Program Specification.

	(B)	reading of more difficult texts. Practice in guided composition.	
LNG 204	French Language (B) Continuation of the audio Lingual method of intensive elementary F Review of grammatical patterns. Expansion of conversational and w skills and vocabulary.		
HUM 202	English Literature Introduction to the forms of literature, short story, novel, drama ar poetry. Developing students' critical ability through carefully selec sample literary texts.		
HUM 203	Commercial Law Kinds of contracts, contract constituents, contract administration, the limitations as imposed by law, disputes, claims, arbitration, the legal variables encountered in business and commercial transactions.		
HUM 204	Industrial Psychology	An introduction to the history, methods and the major theories, concepts of industrial psychology. The course provides non-majors with an overview of the field of industrial psychology, while majors gain a foundation for further study.	
HUM 205	Islamic Civilization (B)	Intellectual aspect of Islam prominent Arab and Muslim scholars and their contribution to various scientific feed mathematics, astronomy, chemistry, medicineetc.	
HUM 206	Islamic Studies	Traditions of prophet Mohamed, Islamic society in Madina, Muslims treatment of non Muslims. The role of the mosque in Islamic society.	

10- Program Admission Requirements:

The Higher Institute of Engineering and Technology at New Minia accepts the Egyptian highschool certificate (scientific division) or equivalentcertificate awarded by foreign country according to the rules and grades that applied by the national admission office in the supreme council of universities. The specialist stages of the program start after a successful pass of the preparatory year (level 0) with at least 33 units out of the required 44 units. The students are then distributed among the different programs in the Higher Institute according to rules set by the institute council that depend on the final grade in the preparatory year as well as students' self-selection and departments requirements.

11- Regulations for Progression and Program Completion:

- The student should achieve at least 208 units in order to be graduated from the program with at least ---- GPA.
- The student is promoted to the next level of the program specialist stages if he/she fulfills the minimum registered and required units of his/her academic year.
- The student must attend more than 75% of the lectures, tutorials and laboratory exercises for each course, as a condition to be allowed to take the final exam. The student who does not meet the 75% attendance will not be allowed to take the final exam. He should make a request with an excuse that the department and institute councils can accept in order to be allowed to go through the final exam. In the case of request rejection, the student is considered "fail" in the course he/she was not allowed to attend its finals.
- The student is required to submit a graduation project in either architectural design or city planning fields according to his/her selection and the rules set by the department council. An extension of four weeks is given to students after the summer semester of level (4).
- The student is entitled to be examined in courses he failed with the students currently studying these courses. In case the student score is 65% and above from the course maximum mark, his mark is reduced to that of the upper limit of "Pass" grade.
- The mark and grade remain the same without change for the student who failed to appear for an examination due to an acceptable excuse.
- Without desecration of Articles 83, 84 and 85 of the executive bylaws of the University Regulation Law, the successful completion of a course is evaluated according to grade points as follows:

Grade	GPA	Equivalent Grade	Percentage
A+	4.0	Distinct (+)	More than 95%
A	3.7	Distinct	From 90 to less than 95%
A-	3.3	Distinct (-)	From 85 to less than 90%
B+	3.0	Very Good (+)	From 80 to less than 85%
В	2.7	Very Good	From 75 to less than 80%
C+	2.3	Good (+)	From 70 to less than 75%
С	2.0	Good	From 65 to less than 70%
D+	1.7	Pass (+)	From 60 to less than 65%
D	1.3	Pass	From 55 to less than 60%
D-	1.0	Pass (-)	From 50 to less than 55%
F	0.0	Fail	Less than 50%

12- Program Evaluation Methods:

Evaluator	Tool	Sample
1- Senior students	Questionnaire	Sample of 25% out of students in years 1,2 and 3
2- Alumni	Questionnaire	Sample of 25% of final year students
3- Stakeholders (Employers)	Questionnaire	Samples from different sectors
4-Internal Evaluator(s)	Internal Report	1-2 reports
5-ExternalEvaluator(s)	External Report	1-2 reports
6- Other	Student's scientific conference according to the universities law of 49 in 1972.	1-Senior students 2-Alumni 3-Employees 4-Stakeholders (Employers)

We certify that all of the information required to deliver this program is contained in the above specification and will be implemented.

Program Coordinator:			
Head of Mechanical Engineering(Mechatronics)Dept.	Dr/ Abdelsalam Ezzat		
Signature:	AZZZA		
Quality Assurance Unit			
Dr. Medhat Mohammed Osman			
Signature: Medhat Tosman			
Dean and Chairman:			
Prof. Dr. Gamal El-Dean Ali Abo Al-Magd			
Signature:	1 Aboutly of		

THE PERSON NAMED IN COLUMN TWO